(—)-12-CYTISINEACETIC ACID, A NEW LUPIN ALKALOID IN *EUCHRESTA JAPONICA**

SHIGERU OHMIYA†, HIROTAKA OTOMASU†, JOJU HAGINIWA‡ and ISAMU MURAKOSHI‡
†Hoshi College of Pharmacy, Ebara 2-4-41, Shinagawa-ku, Tokyo, Japan 142;
‡ Faculty of Pharmaceutical Sciences, University of Chiba, Yayoi-cho 1-33, Chiba, Japan 260

(Received 25 May 1978)

Key Word Index—Euchresta japonica; Leguminosae; alkaloids; methyl 12-cytisineacetate; 12-cytisineacetic acid; cytisine.

Abstract—A new lupin alkaloid, methyl 12-cytisineacetate 1, was isolated from the MeOH extract of *Euchresta japonica*. Its structure was confirmed by spectrometric data and by direct comparison with a synthetic sample. However, 1 is an artifact product and 12-cytisineacetic acid (2) is assumed to be the principal source of 1.

INTRODUCTION

In our continuing studies on the lupin alkaloids in the legume [1-8], we have previously reported the presence of a new alkaloid, 5,17-dehydromatrine N-oxide, in Euchresta japonica [6]. We now report the isolation of one more new lupin alkaloid, methyl 12-cytisineacetate 1, from the MeOH extract of the same plant. However, 1 appears to be an artifact which arises from 12-cytisineacetic acid 2 during extraction in a widely used MeOH solvent system.

RESULTS AND DISCUSSION

Compound (1), recrystallized from *n*-hexane as colourless crystals, mp $107-109^{\circ}$, $[\alpha]_{D}^{15}-174.2^{\circ}$. The molcular formula, $C_{14}H_{18}O_{3}N_{2}$, was established by high resolution MS.

The structure was suggested as methyl 12-cytisineace-tate (1) by its IR absorption bands at 1740 (ester-CO), 1655 (α -pyridone), and by the MS, M⁺ at m/e 262 (22%), 160 (22) and 146 (23) which are characteristic of lupin alkaloids having an α -pyridone-ring [1, 2, 4]. The PMR spectrum (CDCl₃) of 1, except for the two isolated signals at δ 3.18 (2H, s, —CH₂—) and 3.63 (3H, s, CH₃), was essentially superimposable on that of N-methylcytisine, viz δ 1.84 (2H, m, C-8 —CH₂—), 2.43 (1H, br, C-9 H), a set of δ 3.85 and 4.08 (dd and bd, C-10 —CH₂—), together with the downfield signals due to the α -pyridone ring.

In view of the above results, the structure of the new alkaloid was presumed to be methyl 12-cytisineacetate (1). Further confirmation of the identity of the new alkaloid as 1 was obtained by comparing the natural product directly with a synthetic sample, prepared from (-)-cytisine and methyl bromoacetate.

Methyl 12-cytisineacetate (1) might be an artifact arising from an esterification of 12-cytisineacetic acid (2), since the extraction was performed by using 75% MeOH. Therefore, the presence of 2 in the fresh plant

1 R = Me 2 R = H

was examined. Three 75% EtOH extracts from the fresh leaves, stems and roots of *E. japonica* were separately treated with IR-120B (H⁺ form) and each fraction containing the zwitter-ion compounds was directly subjected to TLC for the presence of 2. TLC analyses of all the fractions revealed clearly the presence of 2 in all of the five solvent systems used (see Experimental). Accordingly, the occurrence of the free carboxylic acid (2) in the whole parts of *E. japonica* can be considered to be the normal form in the intact plant and not the new alkaloid (1).

EXPERIMENTAL

MPs are uncorr. The high and low resolution MS were measured at 70 eV. The PMR (100 MHz) was recorded using TMS as internal standard.

Isolation of 1 was as described in previous papers [1-8]. The alkaloid fraction (9.5 g) obtained from the 75% MeOH extracts of the fresh aerial parts of E. japonica collected in July at Kagoshima area, Japan, was chromatographed on a Si gel column (Merck, type 60, 3 × 96 cm) with solvents of increasing alkalinity from [1.5% MeOH. CH₂Cl₂]-28% NH₄OH (1000:1) to [11% MeOH . CH2Cl2]-28% NH2OH (1000:11). 1 appeared as a single compound on elution with [3% MeOH . CH2Cl2]-28% NH₄OH (1000:2). The fractions containing 1 were further purified on a Si gel column to give colourless crystals (45 mg), mp 107–9° (*n*-hexane). 1. $[\alpha]_D^{15}$ –174.2° (*c* = 0.19, EtOH); IR λ_{\max}^{KBr} cm⁻¹: 1740 (ester C=O), 1655 (α -pyridone C=O). [1,2,4]; MS: m/e 262.1315 (M⁺, C₁₄H₁₈O₃N₂ requires 262.1313, m/e 262 (M⁺, 22%), 203 (68), 160 (22), 146 (23), 116 (53), 58 (100) [1, 2, 4]; PMR (CDCl₃): δ 1.84 (m, 2H, C-8 H₂), 2.43 (bm 1H, C-9 H), 2.6-3.1 (m, 5H, C-11 and C-13 H₂, C-7 H), 3.18 (s, 2H, N-CH₂-C=O), 3.63 (s, 3H, -COOCH₃), 3.85 (dd,

^{*} This work was presented at the 98th Annual Meeting of the Pharmaceutical Society of Japan, 4 April 1978.

650

1H, J = 15.5 and 6 Hz, C-10 H), 4.08 (bd, 1H, J = 15.5, C-10 H), 5.98 (dd, 1H, J = 7 and 1.5 Hz, C-5), 6.44 (dd, 1H, J = 9 and 1.5 Hz, C-3 H), 7.28 (dd, 1H, J = 9 and 7 Hz, C-4 H).

Synthesis of 1. A soln of cytisine (57 mg, 0.3 mmol), isolated from Sophora and Thermopsis spp., methyl bromoacetate (69 mg, 0.45 mmol) and triethylamine (0.5 ml) in C_6H_6 (5 ml) was refluxed for 1.5 hr. After removing the solvent in vacuo, the residue was purified by Si gel column chromatography using MeOH-CH₂Cl₂ (1:49). 1 was recrystallized from n-hexane as colourless crystals, mp 107-109°, $[\alpha]_{1}^{1.5}$ - 175.1° (c = 0.27, EtOH). The synthetic product was found to be identical with the natural product (IR, MS, PMR and chromatography).

Hydrolysis of 1 to (-)-12-cytisineacetic acid (2). 1 (50 mg) was heated with 5% NaOH (5 ml) at 60° for 2 hr. The reaction mixture was neutralized with dil. HCl, treated with IR-120B (H⁺ form) to remove the yielded salts and the resulting product, after removal of the solvent, was recrystallized from EtOH– H_2O to give colourless crystals. Yield, 41 mg (87%). 2, mp 234–5° (decomp); $[\alpha]_D^{15}$ – 200.1° (c = 0.34, H_2O): IR λ_{max}^{KBr} cm⁻¹: 3000–2500, 1710 (COOH), 1635 (α -pyridone C=O). 2 exhibited on TLC positive reactions with Dragendorff's and iodoplatinate

Tentative identification of 2 in E. japonica. Well-chopped fresh leaves (7 g), stems (12 g) and roots (32 g) of E. japonica, collected in August at Kagoshima aeria in Japan, were separately soaked in 75% EtOH and extracted $5 \times$ with the same solvent for 10 days. Each extract was reduced to 1/5 in vol., adjusted to pH 5 with dil. HCl and passed through a column of IR-120B (H⁺ form, 2×30 cm). The resin columns were washed with 50% EtOH and H_2O and the basic compounds were then eluted with 3% NH₄OH. The eluates, basified further with 28% NH₄OH to pH 10.5-11, were extracted with CH₂Cl₂ to remove the basic constituents and the aq. layers were concd to dryness

in vacuo. By this means 570, 305 and 250 mg of the $\mathrm{CH_2Cl_2}^-$ insoluble fraction (Zwitterion compounds) were obtained from the parts of leaves, stems and roots, respectively.

For the identification of 2 in the CH_2Cl_2 -insoluble fraction, analytical TLC was performed on Si gel in the following solvent systems: (1) BuOH-HOAc- H_2O (4:1:1), (2) 96% EtOH-28% NH₄OH (7:3), (3) n-PrOH-28% NH₄OH (7:3), (4) CHCl₃-MeOH-17% NH₄OH (2:2:1), (5) CHCl₃-MeOH-17% NH₄OH (11:8:1). R_f values for 2 on Si gel TLC in these solvents were 0.08, 0.73, 0.50, 0.92 and 0.41, respectively. 1 was not identified in the CH₂Cl₂ extracts.

REFERENCES

- Ohmiya, S., Otomasu, H., Murakoshi, I. and Haginiwa, J. (1974) Phytochemistry 13, 643.
- Ohmiya, S., Otomasu, H., Murakoshi, I. and Haginiwa, J. (1974) Phytochemistry 13, 1016.
- Murakoshi, I., Sugimoto, K., Haginiwa, J., Ohmiya, S. and Otomasu, H. (1975) Phytochemistry 14, 2714.
- Murakoshi, I., Fukuchi, K., Haginiwa, J., Ohmiya, S. and Otomasu, H. (1977) Phytochemistry 16, 1460.
- Murakoshi, I., Kakegawa, F., Toriizuka, K., Haginiwa, J., Ohmiya, S. and Otomasu, H. (1977) Phytochemistry 16, 2046.
- Ohmiya, S., Otomasu, H., Haginiwa, J. and Murakoshi, I. (1978) Phytochemistry 17, 2021.
- Ohmiya, S., Higashiyama, K., Otomasu, H., Haginiwa, J., and Murakoshi, I. (1979 Phytochemistry 18, 645.
- 'Aurakoshi, I., Toriizuka, K., Haginiwa, J., Ohmiya, S. and Otomasu, H. (1978) Phytochemistry 17, 1817.